
Automated Clustering-Based Workload Characterization

Odysseas I. Pentakalos Daniel A. Menasc� Yelena Yesha
Code 930.5 Dept. of CS Dept. of EE and CS

NASA GSFC
Greenbelt MD 20771

George Mason University
Fairfax VA 22030

Univ. of Maryland
Baltimore County

odysseas@cesdis.gsfc.nasa.gov menasce@cs.gmu.edu Baltimore MD 21228
301-286-4403 yeyesha@cs.umbc.edu

1. Introduction

The demands placed on the mass storage systems at various federal agencies and national
laboratories are continuously increasing in intensity. This forces system managers to
constantly monitor the system, evaluate the demand placed on it, and tune it
appropriately using either heuristics based on experience or analytic models. Performance
models require an accurate workload characterization. This can be a laborious and time
consuming process. In previous studies [1,2], the authors used k-means clustering
algorithms to characterize the workload imposed on a mass storage system. The result of
the analysis was used as input to a performance prediction tool developed by the authors
to carry out capacity planning studies of hierarchical mass storage systems [3]. It became
evident from our experience that a tool is necessary to automate the workload
characterization process.

This paper presents the design and discusses the implementation of a tool for workload
characterization of mass storage systems. The main features of the tool discussed here
are:

• Automatic support for peak-period determination: histograms of system
activity are generated and presented to the user for peak-period determination.

• Automatic clustering analysis: the data collected from the mass storage system
logs is clustered using clustering algorithms and tightness measures to limit the
number of generated clusters.

• Reporting of varied file statistics: the tool computes several statistics on file
sizes such as average, standard deviation, minimum, maximum, frequency, as
well as average transfer time. These statistics are given on a per cluster basis.

• Portability: the tool can easily be used to characterize the workload in mass
storage systems of different vendors. The user needs to specify through a
simple log description language how the a specific log should be interpreted.

The rest of this paper is organized as follows. Section two presents basic concepts in
workload characterization as they apply to mass storage systems. Section three describes
clustering algorithms and tightness measures. The following section presents the

254

architecture of the tool. Section five presents some results of workload characterization
using the tool. Finally, section six presents some concluding remarks.

2. Workload Characterization

One of the important steps in any capacity planning and performance modeling study is
workload characterization. The purpose of this step is to understand the characteristics of
the workload submitted to a system and determine a synthetic description called workload
model of the global workload. To make these concepts more specific, let us turn our
attention to a mass storage system subject to two types of requests: ftp gets and ftp puts.
Imagine that the system is observed during a few hours of operation the following
information about each request is gathered:

• type of request (get or put),
• request arrival time,
• size of the file involved in the request, and
• time at which the file transfer completed.

If the system is sufficiently busy during the observation period you may collect thousands
of such tuples. The question is what to do with this information? To use this information
in a predictive performance model, one needs a more compact representation than a list with
thousands of entries, one per request. If one looks at all requests, we may find that one
can aggregate them into a reasonably small number of groups of “similar” requests. The
notion of similarity is formalized in the next section. In this section we consider an
intuitive meaning to the term. Within each group, each request is characterized by a pair
(Z, S) where Z is the time since the last arrival of a request of the same type (get or put) and
S is the file size. Suppose that one draws a scatter plot, such as the one in figure 1, where
the x axis represents values of Z and the y axis represents values of S . As one can see,
there is a natural grouping or clustering of points that have similar values of Z and S . Each
cluster can then be represented by the coordinates of its center, called the centroid.

In the case of the example of figure 1, the centroids are: (Z1= 2.48 sec, S1= 4.26 MB),
(Z2= 4.95 sec, S2= 107 MB), and (Z3= 13.76 sec, S2= 45.2 MB). The other information
we obtain from the clustering exercise shown in figure 1 is that 41.2% of requests fall into
cluster 1, 26.8% fall into cluster 2, and 41.2% fall into cluster 3. One can now drop all
measurements and work with the more compact representation of the workload provided by
the three clusters.

Another important aspect in workload characterization is the determination of the interval
during which measurements are obtained. For capacity planning studies and system sizing,
one usually looks for the periods of time when the system is more heavily utilized, or the
peak period. This is usually obtained by looking at histograms of system activity, for
example number of requests submitted or number of bytes transferred, during each hour of
the day for many days. The peak period is the time interval or sets of time intervals during
which the load on the system is high compared to other intervals. Consider figure 2 that
shows a histogram of number of get requests submitted to a mass storage system during a
period of one day. As one can see, the peak period is between 9AM and 6PM. Thus, this
is the period during which measurements should be collected.

255

0

20

40

60

80

100

120

0 5 10 15

Z (sec)

S (M cluster 1

cluster 2

cluster 3

Figure 1 - S versus Z scatter plot.

No. of Gets

0

50

100

150

200

250

300

350

400

450

0-1 2-3 4-5 6-7 8-9
10-11

0-1 2-3 4-5 6-7 8-9
10-11Interval

No

Figure 2 - Histogram for determination of peak period.

So, in summary, workload characterization is composed of the following steps:

1. Determine the basic type of requests (e.g., ftp gets and ftp puts).
2. Collect measurements on system activity for each type of request over a period of

several days and plot a histogram to determine peak periods for each type of request.
3. Collect the measurements needed to characterize the workload during the peak period

(e.g., measure file sizes, inter-arrival times for requests).
4. Cluster the measurements obtained into a small number of groups or clusters using a

clustering algorithm (see next section).

256

The process described above can be quite laborious and time consuming. The purpose of
the tool described in this paper is to automate the whole process for mass storage systems.
The next section discusses in detail the algorithms used to perform clustering analysis and
the criteria used to determine the number of clusters to use in workload characterization.

3. Clustering Algorithms

During the process of workload characterization of a mass storage system, logs of the
requests which arrive at the system to be processed are analyzed. The objective of
clustering is to classify the individual requests into a relatively small number of classes
which impose on the average a load on the system similar to that of the actual workload.
This classification is made based on a measure of similarity or proximity between the
requests. A log with n data points consisting of d components each can be described as a
set of vectors

r
x x xi i i d= (, ... ,), ,1 for i=1,...,n, where x i k, is the k-th feature of the i-th data

point in the log. The proximity between data points is described most commonly in terms
of an n x n matrix, called the proximity matrix where entry ()d d i ji j, ,= is a distance metric
(or dissimilarity measure) between the i-th and j-th data point. The three most commonly

used distance metrics are: the Euclidean distance d i j x xi kk

d

j k(,) (), ,= −
=∑ 1

2 , the Manhattan

distance d i j x xi k j kk

d
(,) , ,= −

=∑ 1
, and the sup distance d i j x xi k d i k j k(,) max , ,= −≤ ≤ .

A number of approaches have been proposed in the literature for clustering data and those
clustering approaches are themselves classified using various characteristics. A clustering
algorithm is exclusive or nonexclusive based on whether the data points are allowed to
belong to only one or more than one cluster, respectively. An exclusive clustering
algorithm is intrinsic or extrinsic based on whether the classification is done based on only
the proximity matrix or based on the proximity matrix and category labels assigned to the
data points. In extrinsic clustering the objective is to determine the discriminant surface
which separates the points based on their categories. An exclusive, intrinsic clustering
algorithm is hierarchical or partitional based on whether the resulting classification is a
nested sequence of partitions or a single partitioning. Finally, an exclusive, intrinsic
algorithm is agglomerative or divisive based on whether the algorithm proceeds by
gradually merging clusters into larger and larger classes or by subdividing larger clusters
into smaller ones.

The specific algorithm used in our tool can now be described using the above terminology
as an exclusive, intrinsic, partitional, agglomerative algorithm. The problem of exclusive,
intrinsic, partitional clustering can be stated as given n points and a desired fixed number of
clusters K , select the partition of those points into clusters such that points in one cluster
are more similar to points in their cluster than to points in the other clusters. The number S
(n,K) of ways to partition n points into K clusters is given by:

S n k
K

K

i
iK i

i

K
n(,)

!
()= − 





−

=
∑1

1
1

Therefore, an exhaustive evaluation of all possible partitions is not feasible. The centroid
of cluster Ck is given by:

257

r r
r

m
C

xk
k x Ck

=
∈
∑1

The within-cluster variation e
k
for cluster Ck is the average distance of all points in the

cluster to its centroid. Thus,

e
C

d x mk
k

k
x Ck

=
∈
∑1

(,)
r r

r

and the tightness E K of a particular clustering is defined as the average of the within-cluster
variation normalized by the maximum value of all within-cluster variations. Hence,

E
K

j
e

eK K

j

k
k

K

=

=
=
∑1

1
1max{ }

Note that both e
k
 and E K are numbers between 0 and 1. The closer to zero the value of

the tightness, the better the clustering quality is. Typically, an iterative algorithm is used to
minimize the global metric E K . One disadvantage of iterative algorithms is that
occasionally they terminate at a local minimum rather than at the desired global minimum.
In practice, one can get more confidence at the quality of the solution by repeating the
algorithm with various different starting partitions and ensuring that the algorithm
terminates at the same solution. The K-means algorithm is one such agglomerative,
iterative algorithm. It is defined as follows:

1. Start with an initial assignment of points to K clusters.
2. Compute the centroid

r
mk of each cluster Ck for k= 1, ...,K.

3. For each point
r
x in the collection do:
{ }j d x mk K k= ≤ ≤min (,)1

r r
 /* find the cluster closest to point

r
x */

let i be such that
r
x Ci∈

if i j≠ then

 C C xj j= ∪ { }
r

. /* add
r
x to the j-the cluster if not already there */

 C C xi i= −{ }
r

 /* remove
r
x from the i-th cluster */

end if
4. Recompute the centroid

r
mj of each cluster Cj for j K= 1,.. , .

5. Repeat steps 2 through 4 until no point changes its cluster assignment during a
complete pass or a maximum number of passes is performed.

A number of variations exist for the K-means algorithm based on how the initial cluster
centroids are selected and on whether the cluster is recomputed after each re-assignment of
a point or after an entire pass through the points has completed as described above
[4,5,6,7]. The version of the algorithm used in our tool is the one proposed by Forgy[8].

258

4. Architecture of the Tool

Figure 3 shows the architecture of the workload characterization tool. Modules are shown
in ovals and internal databases are shown in parallel solid lines. The figure also shows the
Hierarchical Mass Storage System (HMSS) log and a file containing a description of the
log format as the two input files to the tool. Users interact with the tool through a
Graphical User Interface (GUI). Through this interface they can request the tool to open a
specific log, generate histograms for peak period analysis, do workload characterization
through clustering, and view file access statistics and the results of the workload
characterization process.

The Filter process reads the log descriptor and reads the HMSS log and stores the
information in a Measurements DB. This feature of the tool allows it to be used to
characterize workloads for virtually any HMSS provided one can specify the log format
using the log descriptor. Once the information is entered into the DB it can be used as input
to the Histogram Generator and Clustering Engine modules. The Histogram Generator
plots a histogram of system activity for a selected day and time and a selected type of
request (get or put). The Clustering Engine reads the data points from the Measurements
DB, runs a K-means clustering algorithm, and saves the data into a Workload DB. This
module also generates tightness measures to illustrate the quality of the clustering
generated. The Report Generator module reads the workload model from the Workload
DB and generates a workload description in the format expected by Pythia a tool for
performance prediction of mass storage systems developed by the authors [3]. The Report
Generator also stores that information in a format needed by the Results Manager for
presentation of file access statistics and workload model characteristics to the users of the
workload characterization tool.

Screen

GUI

Filter

Histogram
Generator

Clustering
Engine

Report
Generator

Results
Manager

Measurements
DB

Workload
DB

Pythia Workload
DB

Results
DB

HMSS
Log

Log
Descrip.

Figure 3 - Architecture of the e Tool.

5. Using the Tool

259

This section describes the operation of the tool by going through a sample session of
workload characterization. Figure 4 shows the main screen of the tool. The menu bar has
three options. The File menu provides options for opening a log of data, saving the results
of the workload characterization, and quitting from the tool. The View menu provides
options for generating a histogram, viewing the tightness measure as a function of the
number of clusters, and generating a workload characterization. Finally, the Help menu
provides help on the use of the tool. The Data Range window describes the range of the
data values contained in the currently selected log file. Initially, the range will be empty,
but as soon as a log file is opened from the File menu option, the entries will be filled
automatically to describe the range. The user may change the range under consideration at
any time.

Figure 4 - Main Screen of the Tool

The next step after opening a log file is to view a histogram of the data so that the peak
period for this workload can be detected. This is done by selecting the Histogram menu
option from the View menu. Figure 5 shows the window that comes up for selecting
which workload (get or put) should be considered in the histogram. Figure 6 shows a
sample histogram for get requests. The results shown are for the first day in the data range
when the histogram computation was executed. The user may modify the data range and
run the histogram again. Pressing the “Previous Day” button, loads the data for the
previous date and displays the histogram, and pressing the “Next Day”button loads the data
for the next date. Pressing “OK” closes the histogram window. Browsing through the
histograms for a number of days allows one to select the peak period during the day.

Figure 5 - Histogram Configuration Window

260

Figure 6 - Histogram Window

Once the peak period has been selected, the data range can be modified and the user can
then select the “Tightness” option from the View menu. Figure 7 shows the window
which appears for this option Again, it allows the user to select the type of workload to be
analyzed and also the range of clusters to be evaluated. Figure 8 shows the sample plot for
a cluster range of two through ten for get requests. This plot is very helpful in determining
the most appropriate value for the number of clusters. It allows one to visually select a
local minimum for the tightness measure which compromises between a fairly accurate
workload with as small a number of clusters as possible.

Figure 7 - Tightness Configuration Window

261

Figure 8 - Tightness Variation Plot

The final step in the workload characterization is to determine the cluster centroids, and
cluster sizes, for a given number of clusters. This is done by selecting the “Workload”
option from the View menu. The Workload Configuration window comes up, shown in
figure 9, which allows one to select the workload type, and number of clusters. Once the
workload has been computed the Workload window pops-up which describes the
workload parameters as shown in figure 10. The workload window includes information
such as the name of the log file, the number of clusters selected, and for each cluster,
describes the centroid, the number of points from the log which belong to the cluster, and
the frequency.

Figure 9 - Workload Configuration Window

262

Figure 10 - Workload Window

6. Concluding Remarks

This paper described the design and operation of a tool for automating the workload
characterization of mass storage system workloads. The tool is based on a variation of the
K-means clustering algorithm. In addition to characterization of the workload, the tool
allows one to determine the peak-period of system usage by providing a browsing
capability through histograms of workload requests, and also simplifies the task of
selecting the number of clusters present in the workload by plotting a measure of the
accuracy of the clustering as a function of the number of clusters.

Bibliography

[1] Daniel A. Menascé, Odysseas I. Pentakalos, and Yelena Yesha, “An Analytic Model of
Hierarchical Mass Storage Systems with Network-Attached Storage Devices,” Proc. of the
ACM SIGMETRICS’96 Conference Philadelphia, PA, May 23-26 1996.

[2] Odysseas I. Pentakalos, Daniel A. Menascé, Milt Halem, and Yelena Yesha, “An
Approximate Performance Model of a Unitree Mass Storage System,” 14th IEEE
Symposium on Mass Storage Systems, Monterey, California, September 1995, pp. 210--
224.

[3] Odysseas I. Pentakalos, Daniel A. Menascé, and Yelena Yesha, “An Object-Oriented
Performance Analyzer of Hierarchical Mass Storage Systems,” submitted to the 1996
Computer Measurement Group Conference, San Diego, CA, December 1996.

[4] Michael R. Anderberg, Cluster Analysis for Applications, Academic Press, New York,
NY, 1973.

[5] Anil K. Jain and Richard C. Dubes, Algorithms for Clustering Data, Prentice Hall,
Englewood Cliffs, NJ, 1988.

[6] Leonard Kaufman and Peter J. Rousseeuw, Finding Groups in Data, John Wiley &
Sons, Inc., New York, NY, 1990.

263

[7] Daniel A. Menascé, Virgilio A. F. Almeida, and Larry W. Dowdy, Capacity Planning
and Performance Modeling: from mainframes to client-server systems,” Prentice-Hall,
Englewood Cliffs, NJ, 1994.

[8] E. Forgy, “Cluster Analysis of multivariate data: efficiency versus interpretability of
classifications”, Biometrics, 21, 768, 1965.

